首页> 外文OA文献 >Dense Multiperson Tracking with Robust Hierarchical Linear Assignment
【2h】

Dense Multiperson Tracking with Robust Hierarchical Linear Assignment

机译:具有稳健的分层线性分配的密集多人跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce a novel dual-stage algorithm for online multi-target tracking in realistic conditions. In the first stage, the problem of data association between tracklets and detections, given partial occlusion, is addressed using a novel occlusion robust appearance similarity method. This is used to robustly link tracklets with detections without requiring explicit knowledge of the occluded regions. In the second stage, tracklets are linked using a novel method of constraining the linking process that removes the need for ad-hoc tracklet linking rules. In this method, links between tracklets are permitted based on their agreement with optical flow evidence. Tests of this new tracking system have been performed using several public datasets.
机译:我们介绍了一种在现实条件下用于在线多目标跟踪的新型双阶段算法。在第一阶段,使用新颖的遮挡鲁棒外观相似度方法,解决了在给定局部遮挡的情况下,小径与检测之间的数据关联问题。这用于将小波与检测稳健地链接在一起,而无需明确了解被遮挡的区域。在第二阶段,使用一种新颖的约束链接过程的方法来链接小轨迹,从而消除了对临时小轨迹链接规则的需求。在这种方法中,基于小径与光流证据的一致性,允许小径之间的链接。已经使用多个公共数据集对该新跟踪系统进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号